Paraconsistent mathematics
Paraconsistent mathematics (sometimes called inconsistent mathematics) represents an attempt to develop the classical infrastructure of mathematics (e.g. analysis) based on a foundation of paraconsistent logic instead of classical logic. A number of interesting reformulations of analysis can be developed, for example functions which both do and do not have a given value simultaneously.
Chris Mortensen claims (see references):
- One could hardly ignore the examples of analysis and its special case, the calculus. There prove to be many places where there are distinctive inconsistent insights; see Mortensen (1995) for example. (1) Robinson's non-standard analysis was based on infinitesimals, quantities smaller than any real number, as well as their reciprocals, the infinite numbers. This has an inconsistent version, which has some advantages for calculation in being able to discard higher-order infinitesimals. Interestingly, the theory of differentiation turned out to have these advantages, while the theory of integration did not. (2)
References
- Inconsistent Mathematics, by Chris Mortensen, Dordrecht, Kluwer Academic Publishers, 1995 Kluwer Mathematics and Its Applications Series, Vol 312 ISBN 0-7923-3186-9
External links
- Entry in the Stanford Encyclopedia of Philosophy [1]
- Lectures by Manuel Bremer of the University of Düsseldorf [2]
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›